Copied to
clipboard

G = C22.2D24order 192 = 26·3

1st non-split extension by C22 of D24 acting via D24/D12=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C22.2D24, C23.36D12, C6.9C4≀C2, (C2×C6).1D8, (C2×D12)⋊2C4, C22⋊C82S3, C4⋊Dic34C4, (C2×C6).2SD16, C127D4.1C2, (C2×C12).440D4, C6.6(C23⋊C4), (C22×C4).71D6, (C22×C6).40D4, C2.3(C2.D24), C32(C22.SD16), C2.7(D12⋊C4), C6.11(D4⋊C4), C6.C4226C2, C22.2(C24⋊C2), C22.59(D6⋊C4), (C22×C12).41C22, C2.7(C23.6D6), (C3×C22⋊C8)⋊2C2, (C2×C4).13(C4×S3), (C2×C12).25(C2×C4), (C2×C4).211(C3⋊D4), (C2×C6).42(C22⋊C4), SmallGroup(192,29)

Series: Derived Chief Lower central Upper central

C1C2×C12 — C22.2D24
C1C3C6C2×C6C2×C12C22×C12C127D4 — C22.2D24
C3C2×C6C2×C12 — C22.2D24
C1C22C22×C4C22⋊C8

Generators and relations for C22.2D24
 G = < a,b,c,d | a2=b2=c24=1, d2=a, cac-1=ab=ba, ad=da, bc=cb, bd=db, dcd-1=ac-1 >

Subgroups: 352 in 90 conjugacy classes, 29 normal (all characteristic)
C1, C2, C2, C3, C4, C22, C22, S3, C6, C6, C8, C2×C4, C2×C4, D4, C23, C23, Dic3, C12, D6, C2×C6, C2×C6, C22⋊C4, C4⋊C4, C2×C8, C22×C4, C22×C4, C2×D4, C24, D12, C2×Dic3, C3⋊D4, C2×C12, C2×C12, C22×S3, C22×C6, C2.C42, C22⋊C8, C4⋊D4, C4⋊Dic3, D6⋊C4, C2×C24, C2×D12, C22×Dic3, C2×C3⋊D4, C22×C12, C22.SD16, C6.C42, C3×C22⋊C8, C127D4, C22.2D24
Quotients: C1, C2, C4, C22, S3, C2×C4, D4, D6, C22⋊C4, D8, SD16, C4×S3, D12, C3⋊D4, C23⋊C4, D4⋊C4, C4≀C2, C24⋊C2, D24, D6⋊C4, C22.SD16, C23.6D6, C2.D24, D12⋊C4, C22.2D24

Smallest permutation representation of C22.2D24
On 48 points
Generators in S48
(1 29)(3 31)(5 33)(7 35)(9 37)(11 39)(13 41)(15 43)(17 45)(19 47)(21 25)(23 27)
(1 29)(2 30)(3 31)(4 32)(5 33)(6 34)(7 35)(8 36)(9 37)(10 38)(11 39)(12 40)(13 41)(14 42)(15 43)(16 44)(17 45)(18 46)(19 47)(20 48)(21 25)(22 26)(23 27)(24 28)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48)
(1 15 29 43)(2 14)(3 41 31 13)(4 40)(5 11 33 39)(6 10)(7 37 35 9)(8 36)(12 32)(16 28)(17 23 45 27)(18 22)(19 25 47 21)(20 48)(24 44)(26 46)(30 42)(34 38)

G:=sub<Sym(48)| (1,29)(3,31)(5,33)(7,35)(9,37)(11,39)(13,41)(15,43)(17,45)(19,47)(21,25)(23,27), (1,29)(2,30)(3,31)(4,32)(5,33)(6,34)(7,35)(8,36)(9,37)(10,38)(11,39)(12,40)(13,41)(14,42)(15,43)(16,44)(17,45)(18,46)(19,47)(20,48)(21,25)(22,26)(23,27)(24,28), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48), (1,15,29,43)(2,14)(3,41,31,13)(4,40)(5,11,33,39)(6,10)(7,37,35,9)(8,36)(12,32)(16,28)(17,23,45,27)(18,22)(19,25,47,21)(20,48)(24,44)(26,46)(30,42)(34,38)>;

G:=Group( (1,29)(3,31)(5,33)(7,35)(9,37)(11,39)(13,41)(15,43)(17,45)(19,47)(21,25)(23,27), (1,29)(2,30)(3,31)(4,32)(5,33)(6,34)(7,35)(8,36)(9,37)(10,38)(11,39)(12,40)(13,41)(14,42)(15,43)(16,44)(17,45)(18,46)(19,47)(20,48)(21,25)(22,26)(23,27)(24,28), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48), (1,15,29,43)(2,14)(3,41,31,13)(4,40)(5,11,33,39)(6,10)(7,37,35,9)(8,36)(12,32)(16,28)(17,23,45,27)(18,22)(19,25,47,21)(20,48)(24,44)(26,46)(30,42)(34,38) );

G=PermutationGroup([[(1,29),(3,31),(5,33),(7,35),(9,37),(11,39),(13,41),(15,43),(17,45),(19,47),(21,25),(23,27)], [(1,29),(2,30),(3,31),(4,32),(5,33),(6,34),(7,35),(8,36),(9,37),(10,38),(11,39),(12,40),(13,41),(14,42),(15,43),(16,44),(17,45),(18,46),(19,47),(20,48),(21,25),(22,26),(23,27),(24,28)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)], [(1,15,29,43),(2,14),(3,41,31,13),(4,40),(5,11,33,39),(6,10),(7,37,35,9),(8,36),(12,32),(16,28),(17,23,45,27),(18,22),(19,25,47,21),(20,48),(24,44),(26,46),(30,42),(34,38)]])

39 conjugacy classes

class 1 2A2B2C2D2E2F 3 4A4B4C4D4E4F4G4H6A6B6C6D6E8A8B8C8D12A12B12C12D12E12F24A···24H
order122222234444444466666888812121212121224···24
size11112224222412121212242224444442222444···4

39 irreducible representations

dim111111222222222222444
type++++++++++++
imageC1C2C2C2C4C4S3D4D4D6D8SD16C4×S3C3⋊D4D12C4≀C2C24⋊C2D24C23⋊C4C23.6D6D12⋊C4
kernelC22.2D24C6.C42C3×C22⋊C8C127D4C4⋊Dic3C2×D12C22⋊C8C2×C12C22×C6C22×C4C2×C6C2×C6C2×C4C2×C4C23C6C22C22C6C2C2
# reps111122111122222444122

Matrix representation of C22.2D24 in GL4(𝔽73) generated by

72000
0100
0010
0001
,
72000
07200
0010
0001
,
0100
46000
005523
00505
,
27000
07200
006614
0077
G:=sub<GL(4,GF(73))| [72,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1],[72,0,0,0,0,72,0,0,0,0,1,0,0,0,0,1],[0,46,0,0,1,0,0,0,0,0,55,50,0,0,23,5],[27,0,0,0,0,72,0,0,0,0,66,7,0,0,14,7] >;

C22.2D24 in GAP, Magma, Sage, TeX

C_2^2._2D_{24}
% in TeX

G:=Group("C2^2.2D24");
// GroupNames label

G:=SmallGroup(192,29);
// by ID

G=gap.SmallGroup(192,29);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,85,92,422,387,100,1123,570,6278]);
// Polycyclic

G:=Group<a,b,c,d|a^2=b^2=c^24=1,d^2=a,c*a*c^-1=a*b=b*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d^-1=a*c^-1>;
// generators/relations

׿
×
𝔽